mdi-book-open-variant Impressum mdi-help Hilfe / Anleitung mdi-printer Webseite ausdrucken mdi-bookmark Bookmark der Webseite speichern mdi-magnify Suche & Index Wirkstoffe mdi-sitemap Sitemap CliniPharm/CliniTox-Webserver mdi-home Startseite CliniPharm/CliniTox-Webserver mdi-email Beratungsdienst: Email / Post / Fax / Telefon

Gametchu B, Watson CS & Pasko D
Size and steroid-binding characterization of membrane-associated glucocorticoid receptor in S-49 lymphoma cells.

Steroids, 56(8): 402-410, 1991
ISSN: 0039-128X Steroids (PubMed)

Abstract
The precise mechanism for glucocorticoid-mediated lymphocytolysis is not understood, although it is presumed to be receptor mediated. We have recently presented evidence that this response is mediated by a specialized form of the glucocorticoid receptor (GR) that resides in the plasma membrane (mGR). Confirmation of the previous receptor identification studies in a population of S-49 cells enriched for mGR is now made using another antibody specific for the rodent GR, BUGR-2. The membrane resident receptor could be labeled competitively with the affinity ligand dexamethasone 21-mesylate, and Scatchard analysis of whole cell binding revealed that receptor number, but not the affinity for hormone, varied between the mGR-enriched and -deficient cell populations. Steroid specificity displacement analyses showed an order of affinities as follows: triamcinolone acetonide greater than progesterone greater than dexamethasone greater than testosterone = estrogen. Studies of mGR by one- and two-dimensional gel electrophoresis, immunoblot, autoradiography, and density gradients revealed a species with an equivalent size to cytosolic receptor as well as multiple higher molecular weight species, confirming earlier studies. To offer a possible explanation for the nucleic acid origins of the mGR, RNA from the mGR-enriched cells was probed with rat GR cDNA; mGR-enriched cells contained higher levels of GR mRNA. Possible molecular etiologies of larger receptor species in membrane are discussed.

© 2021 - Institut für Veterinärpharmakologie und ‑toxikologie

Es kann keinerlei Haftung für Ansprüche übernommen werden, die aus dieser Webseite erwachsen könnten.