mdi-book-open-variant Impressum mdi-help Hilfe / Anleitung mdi-printer Webseite ausdrucken mdi-bookmark Bookmark der Webseite speichern mdi-magnify Suche & Index Wirkstoffe mdi-sitemap Sitemap CliniPharm/CliniTox-Webserver mdi-home Startseite CliniPharm/CliniTox-Webserver mdi-email Beratungsdienst: Email / Post / Fax / Telefon

O'Brien RM, Noisin EL, Suwanichkul A, Yamasaki T, Lucas PC, Wang JC et al
Hepatic nuclear factor 3- and hormone-regulated expression of the phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein 1 genes.

Mol Cell Biol, 15(3): 1747-1758, 1995
ISSN: 0270-7306 Molecular and Cellular Biology (PubMed)

Abstract
The rate of transcription of the hepatic phosphoenolpyruvate carboxykinase (PEPCK) and insulin-like growth factor-binding protein 1 (IGFBP-1) genes is stimulated by glucocorticoids and inhibited by insulin. In both cases, the effect of insulin is dominant, since it suppresses both basal and glucocorticoid-stimulated PEPCK or IGFBP-1 gene transcription. Analyses of both promoters by transfection of PEPCK or IGFBP-1-chloramphenicol acetyltransferase fusion genes into rat hepatoma cells has led to the identification of insulin response sequences (IRSs) in both genes. The core IRS, T(G/A)TTTTG, is the same in both genes, but the PEPCK promoter has a single copy of this element whereas the IGFBP-1 promoter has two copies arranged as an inverted palindrome. The IGFBP-1 IRS and PEPCK IRS both bind the alpha and beta forms of hepatic nuclear factor 3 (HNF-3), although the latter does so with a sixfold-lower relative affinity. Both the PEPCK and the IGFBP-1 IRSs also function as accessory factor binding sites required for the full induction of gene transcription by glucocorticoids. A combination of transient transfection and DNA binding studies suggests that HNF-3 is the accessory factor that supports glucocorticoid-induced gene transcription. In both genes, the HNF-3 binding site overlaps the IRS core motif(s). A model in which insulin is postulated to mediate its negative effect on glucocorticoid-induced PEPCK and IGFBP-1 gene transcription indirectly by inhibiting HNF-3 action is proposed.

© {{ new Date().getFullYear() }} - Institut für Veterinärpharmakologie und ‑toxikologie

Es kann keinerlei Haftung für Ansprüche übernommen werden, die aus dieser Webseite erwachsen könnten.