mdi-book-open-variant Impressum mdi-help Hilfe / Anleitung mdi-printer Webseite ausdrucken mdi-bookmark Bookmark der Webseite speichern mdi-magnify Suche & Index Wirkstoffe mdi-sitemap Sitemap CliniPharm/CliniTox-Webserver mdi-home Startseite CliniPharm/CliniTox-Webserver mdi-email Beratungsdienst: Email / Post / Fax / Telefon

Harvey BJ, Alzamora R, Healy V, Renard C & Doolan CM
Rapid responses to steroid hormones: from frog skin to human colon. A homage to Hans Ussing.

Biochim Biophys Acta, 1566(1-2): 116-128, 2002
ISSN: 0006-3002 Biochimica et Biophysica Acta (PubMed)

Abstract
Fifty years ago, Hans Ussing described the mechanism by which ions are actively transported across frog skin. Since then, an enormous amount of effort has been invested in determining the cellular and molecular specifics of the transport mechanisms and their regulatory pathways. Ion transport in high-resistance epithelia is regulated by a variety of hormonal and non-hormonal factors. In vertebrates, steroid hormones such as mineralocorticoids, glucocorticoids and estrogens are major regulators of ion and water transport and hence are central to the control of extracellular fluid volume and blood pressure. Steroid hormones act through nuclear receptors to control the transcriptional activity of specific target genes, such as ion channels, ion transporters and ion pumps. These effects are observed after a latency of several hours and can last for days leading to cellular differentiation that allows a higher transport activity. This pathway is the so-called genomic phase. However, in the past 10 years, it has become apparent that steroid hormones can regulate electrolyte and water transport in tight epithelia independently of the transcription of these ion channels and transporters by regulating ion transporter activity in a non-genomic fashion via modulation of various signal transduction pathways. The molecular mechanisms underlying the steroid hormone-induced activation of signal transduction pathways such as protein kinase C (PKC), protein kinase A (PKA), intracellular calcium, intracellular pH and mitogen-activated protein kinases (MAPKs) and how non-genomic activation of these pathways influences epithelial ion transport will be discussed in this review.

© 2021 - Institut für Veterinärpharmakologie und ‑toxikologie

Es kann keinerlei Haftung für Ansprüche übernommen werden, die aus dieser Webseite erwachsen könnten.